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We derived a closed system of equations for calculating the single-point joint probability density function 
(JPDF) of the magnitudes of fluctuations of a scalar reacting field and its gradient. The system of equations 
includes an equation for the JPDF and two equations for functions that describe the distribution of turbulent 
energy and of the reacting-scalar intensity over various length scales. The latter functions are necessary for 
calculation of the time-dependent coefficients in the equation for the JPDF. 

1. Introduction. Current approaches to turbulent combustion are associated with the study of flames that 

are far from the state of chemical equilibrium. The assumption of equilibrium chemistry, which provides the 

possibility of limiting oneself to the study of the statistics of a passive scalar field, turns out to be unsatisfactory. 

The development of theoretical models of turbulent combustion that take into account a large deviation from 

chemical equilibrium requires a deep knowledge of the statistical characteristics of the gradient of a turbulent scalar 

field. 

In particular, it turned out that description of turbulent combustion in flows with nonpremixed reagents in 

a state close to local extinction requires a knowledge of the probability density of the magnitudes of the dissipation 

rates of the mixture coefficient fluctuations on a stoichiometric surface [1 ]. In order tO calculate this function, it is 

necessary to derive and solve an equation for the joint probability density function (JPDF) of the magnitudes of 

the mixture coefficient and its gradient. So far, the problem has not been solved to an extent sufficient for practical 

application of such an equation, even though such attempts have been undertaken [2-6 ]. 

In [2 ] a closed equation was derived for the JPDF of a scalar and its gradient in an isotropic turbulent 

flow. It was used as a basis for analyzing the results of the action on the J P D F  structure by the mechanisms of 

molecular mixing and chemical reaction and by the turbulent velocity field. The conclusion was drawn that a 

correlation between the field of the scalar and its gradient is induced by a chemical reaction and turbulent mixing. 

It was shown that the assumption of the statistical independence of a conservative scalar and its gradient in a 

turbulent flow becomes plausible only at large Reynolds numbers. Diffusion terms, which produce openness in the 

equation for the JPDF, were replaced by model expressions that describe relaxation of turbulent fluctuations of the 

scalar to its mean value. Because of the extreme simplification of diffusion effects, the solution of the equation for 

the JPDF closed in this manner incorrectly describes the evolution of the form of the sought function from a 

non-Gaussian initial condition. 

In [3 ] another way of closing the equation for the JPDF of a scalar and its gradient was adopted. A mapping 

was established between the scalar field investigated and a multidimensional Gaussian standard field on each time 

interval, and thus the evolution of the statistical properties of the scalar field was found. As shown in [3 ], this 

amplitude closure is quite satisfactory for describing diffusion effects. However, the terms that describe turbulent 

stretching must be obtained on the basis of other considerations, for example, from results of direct numerical 

simulation of turbulent velocity and scalar fields. 
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In [4, 5 ], to describe the JPDF of a scalar and its gradient, it is suggested that the Fokker-Planck equation 

based on a simple physical model of scalar transfer be used. This model gives results close to those obtained by 

numerical simulation of a nonpremixed system of certain formations (lamillas) with random dimensions. The 

evolution of marginal functions and the JPDF that was predicted on the basis of this model is in good qualitative 

agreement with results of numerical simulation. 

In [6 ] certain properties of the JPDF of a scalar and its gradient have been studied. It is shown that the 

conditional probability density function of the scalar gradient values at a prescribed value of the scalar has a nearly 

Gaussian distribution. The conditional probabilities of the scalar derivatives were obtained in the form of 

Gramme-Charles  series. The coefficients in these expansions were calculated using results of direct numerical 

simulation of a stationary turbulent scalar field. 
We note once again that the JPDF of a scalar and its gradient is an important quantity for describing 

turbulent reacting flows and combustion and, as shown in [7 ], actually determines the chemical-reaction rate. 

We made an attempt to derive a closed system of equations to describe the evolution of the JPDF of a 

reacting scalar and its gradient. The nonclosed equation given for this function in [8 ] was taken as the basis. This 

linear equation contains coefficients and conditional moments of various quantities that are to be calculated at fixed 

values of the scalar and its gradient. The closure of the equation for the JPDF is reduced to the calculation of these 

conditional moments. The closed equation for the JPDF contains time-dependent coefficients that can be calculated 

using any two-point functions. Spectral distributions of the energy of the turbulent velocity field and of the intensity 

of scalar fluctuations of the reacting fields and the corresponding closed equations for these functions are suitable 

for this purpose [9, 10 ]. It is also possible to resort to structural functions of the fields of the velocity D L L ( r ,  t) 

and the scalar D c c ( r ,  t ) .  In the present work, in order to calculate the time-dependent coefficients in the equation 

for the JPDF, it is suggested that the functions P t ( r )  = - - d D L L ( r ,  D / O r  and P~C)(r) = - d D c c ( r ,  t ) / O r  be used, 

closed equations for which are presented in [I1 ]. These functions describe the distribution of the energy of 

turbulent fluctuations of the velocity and of the intensity of scalar fluctuations over various length scales. The closed 

system of equations obtained below for computing the JPDF of a scalar and its gradient will be used in what follows 

for deriving a closed equation for the conditional dissipation rate of the intensity of the mixture coefficient 

fluctuations. 
2. Nonclosed Equation for the JPDF of a Scalar and Its Gradient. Equations that determine the dynamics 

of realizations of fluctuations of a scalar reacting field (and its gradient) have the form 

Oc Oc 02c 
0--7 + u, ,  ox---~ - D oxaox,~ - co (c)  , (1) 

Oz i Og i OU a O2gi d~h 
0--7 + u a  Ox a - Ox i za  + D OxaO------~a + - ~  z i , i = 1, 2, a .  (2) 

In relations (1), (2) and below, the usual condition of summation over repeated indices from 1 to 3 is adopted; D 

is the coefficient of kinematic diffusion; the variables c,  z i, and u a  denote fluctuations of the scalar reacting field, 

the components of its gradient, and the components of velocity fluctuations; the function 6)(c) describes fluctuations 

of the chemical-reaction rate. The variables c, zi,  and Ua are functions of the spatial variables ~ a n d  the time t: 

c -- c ( ~,, t)  z i  --- zi ( -~ t) " u i  ==- ; = • ; x ,  , u i (~,  t) i 1, 2, 3 (3) 

The JPDF of a scalar and its gradient is defined by the formula 

. (3  ) 
px ( w ,  r )  = 1-I 6 - 6 ( r  - 0 , (4) 

i=I 
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where ( ) denotes averaging over the ensemble of realizations; x -= (~, t); Wi and F are independent variables of 

the JPDF; z i and c are functions that satisfy Eqs. (1) and (2). 

In deriving an equation for the function Px(W, F) the concept of the so-called fine-structure probability 

density is usually used (see p. 191 of [12]): 

3 
"~0 -= 1-I ~ ( w ~ -  zi) e ( V -  c). (5) 

i = 1  

Comparing Eqs. (4) and (5), we obtain that Px(W, F) = (.~'). 
-=~ 

An equation for the JPDF Px(W, F) is derived by differentiation of expression (4) with respect to time, 

replacement of the derivatives oc/at and Ozi/Ot by their values from Eqs. (1) and (2), and subsequent averaging 

of each of the terms obtained. The nonclosed equation for the function Px(~V, F) is given in [8 ] (see formulas (305) 

and (306)). We will write it here as a matter of convenience, having changed somewhat the notation and restricting 

ourselves to the isotropic case. Here, all terms associated with spatial derivatives will be discarded: 

opt (~,  r )  0 2 o - .  
= -- O W 2 - ~  et (~r, F) + ~ [WflAafl (t [ W, r) Pt (W, F)] - 

at owa 

- D  
a 2 ..~ _.~ 

aw~,owa [Jvaff (t I w, r )  Pt (w, r )  1 - 2D 
0 2 .-~ .-~ 

owaor [w#xaff (w, r) Pt ( w ,  r )  l - 

a -, a a[Tg -- ] - ~ r  |~ (r)  Pt (w, r )  l - ~ w ~ t  (w, r )  . (6)  

The first term on the right-hand side of Eq. (6) enters into the equation for the JPDF in closed form. It describes 

the effect of the process of diffusion in the space of scalar values. The second term of the equation contains the 

conditional mean tensor of the velocity gradient calculated at fixed values of the scalar c = F and its gradient ~=  

W: 

Aaff (t [ W, F) = f dG GaffP t (G [ IV, F) . (7) 

= g ~  =* 
Here Pt(GI w, r> is the conditional JPDF of the velocity gradient values; fdG denotes multidimensional integration 

over the values of the components of the velocity gradient tensor Gaff. In contrast to the usual mean value of the 

velocity fluctuation gradient, equal to zero in a turbulent isotropic flow, the conditional mean components of the 

velocity gradient are not equal to zero. They tend to zero if there is no statistical dependence between the 

fluctuational field of the velocity gradient and the fields of the scalar and its gradient. By means of the second term 

on the right-hand side of Eq. (6), the effect of the gradient of turbulent velocity fluctuations on the joint statistics 

of the scalar reacting field and its gradient is described. The third term on the right-hand side of Eq. (6) involves 

the tensor of the conditional rate of dissipation of the dissipation calculated at fixed values of the scalar and its 

gradient: 

Naff (t I W, r )  = f d X ~ m p  t ( X I W, r ) .  (s) 

Here Pt(X[ W, I') is the conditional JPDF of the values of the components of the tensor of the gradient of the 

gradient (i.e., of the second derivative) of the scalar; f d ~  denotes multidimensional integration over the values of 

the components of the tensor Xaff. This term describes the effect of dissipation in the space of the scalar gradient 

on the joint statistics of the scalar reacting field and its gradient. The fourth term on the right-hand side of Eq. 

(6) involves the tensor of the mean conditional gradient of the scalar gradient, which must be calculated at fixed 
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values of the scalar and its gradient. This term describes the effect of cross diffusion in the space of the scalar and 

the scalar gradient on the joint statistics of the reacting scalar and its gradient: 

Xat ~ (t [ W, F) = f dXXa3P t (X ]W, F). (9) 

Usual mean values of the second derivative of scalar fluctuations are equal to zero. But conditionally averaged 

components of this tensor are equal to zero only in the absence of a dependence between the second derivative of 

the scalar, its first derivative, and the scalar. The fifth and the sixth terms on the right-hand side of Eq. (6) describe 

the effect exerted on the JPDF by the chemical-reaction rate. 

From Eqs. (6)-(9) it is seen that the openness of the equation for the JPDF Pt(VV, [') is due to the presence of the 

tensor coefficients A, N, and X in Eq. (6). The components of these tensors are conditional moments of the fields 

of the velocity gradient and the gradient of the scalar-field gradient. These quantities must be calculated on the 

condition that the scalar field and its gradient take certain values: c = F, 7-- ~z. As is seen from equalities (7)-(9), 

in order  to calculate the conditional quantities A, N, and X it is necessary to have the conditional JPDFs 

Pt(G [ W, F) and Pt(X [ IV, F). For approximate evaluation of the form of these functions, we can employ their formal 

definitions: 

:g ~ Pt (G,W, r )  ~ --> Pt ( x , w ,  r )  
Pt (G I w, r )  - -, , Pt (X I W, r )  _ . (lo) 

Pt (w, r )  Pt (w, r )  

The right-hand sides of these formulas are expressed in terms of the usual (i.e., unconditional) quantities. Here 

Pt(G, W, F) is the JPDF of the fields of the velocity gradient, the scalar gradient, and the scalar; Pt(X, W, F) is 

the JPDF of the fields of the gradient of the scalar gradient, the scalar gradient, and the scalar; Pt(W, F) is the 

JPDF of the fields of the scalar gradient and the scalar, i.e., the very function for which we are trying to write a 

closed equation. 

The tensor coefficients in Eqs. (7)-(9) can be expressed approximately in terms of the usual (unconditional) 

moments of the fields of the velocity gradient, the gradient of the scalar gradient, and the scalar and all cross 

moments of these fields. If we assume that all JPDFs on the right-hand sides of Eqs. (10) are Gaussian, then the 

expression for the conditional JPDFs will be determined by the second-order moments of the fields Oua/Ox3, 

Oza/Ox3, za, and c. But if the Gaussian approximation turns out to be insufficient for calculating conditional 

quantities, then, to refine the corresponding JPDFs, one can use information on the higher-order moments of these 

fields. In the present case, expansion into a Gramme-Char les  series may prove useful [13 ]. The  problem of closure 

of Eq. (6) can be considered to be solved if one manages to obtain expressions for the conditional tensor coefficients 

A, N, X in terms of the usual moments and to calculate these moments from closed equations. The entire remaining 

part of this paper is concerned with the calculation of the conditional tensor coefficients A, N, and X. 
5 - >  

3. Calculation of the Conditional JPDF Pt(G I IV, F) in the Gaussian Approximation. As seen from Eq. (10), 

in order to calculate the conditional JPDF of the velocity gradient tensor in the Gaussian approximation, it is 
~]~ ...> ...> 

necessary to calculate the functions Pt(G, W, F) and Pt(W, F) in this approximation. We will first write out the 

function Pt(G, W, F) in general form: 

, :  , :  
1 ~ ~ dafl~a 

~ exp - ~ a=l fl=l (11) 

Pt (G,W, F) -- 6 1/2 
(2~) D 1 (71a 2 ... a12 

The symbols ~i, i = 1, 2 . . . . .  12, denote independent variables of the function Pt(G, W, r) that correspond 

to the components of the fields Oui/Oxy , z a, and c. The correspondence between these components and the symbols 
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~i is prescr ibed by the following s e t  of  i d e n t i t i e s :  OUl/OX 1 o ~1, Olll/OX2 o ~2, OUl/OX3 o ~3, Ou2/OXl <> ~ I ,  

Ott2/Ox 2 o ~5, Ou2/Ox3 o ~6, 0 u 3 / 0 x 1  o ~7, 0 t t 3 / 0 x 2  o ~8, Zl o ~9, z2 o ~10, 2,3 o ~1 l ,  c o ~ 1 2 .  T h e  a c c e l e r a t i o n  

c o m p o n e n t  OU3/OX 3 can be expressed in terms of dul /Oxl  and Ou2/dx2 using the condition of incompressibility. 

We will assume that all the variables ~i are made dimensionlees by division by the corresponding dispersion: 

~i = ~i/oi ,  i = 1, 2 . . . . .  12, where ~. are the dimensional variables; 0.i are  the dispersions of the corresponding 

components;  D 1 is the determinant  of the correlation matrix rij; daft are  elements of the matrix inverse to the 

correlation matrix,  daft = rS~. The  elements rik are correlations between the quantities Oua/dxfl,  za, and c. In 

counting the number  n of correlations to be calculated, the symmet ry  of the matr ix rik is taken into account, as 

well as the fact that the diagonal elements of the correlation matrix are equal to unity: n -- [(12.12) - 12 ] /2  = 66. 

T h e  ma t r ix  e l ements  tha t  descr ibe  cor re la t ions  be tween  c o m p o n e n t s  of the  veloci ty  g r ad i en t  f ie ld  rik = 

1/(0.1ak)(OUj/OXm)(OUl/OXn) can be calculated by means of formula (13.53) of [14 ]: 

1 02D]l(r-*)] (12) 

r i k -  20.10"k OrmOrn [ 7=0 

Using the expression for the structural tensor  Djl (~  in terms of the longitudinal structural  function DLL(r, t): 

Djl (  r-~ = [ r  2 2 Or + t~j` 1 + 2 Or DLL (r) , 

it is possible to express all the correlators of the form (12) in terms of local characteristics of the acceleration field 

(formula (13) is easily obtained from (13.69) and (13.87) of [14 ]). 

Since the values of the structural function DLL(r, t) are required only for r - ,  O, it is possible to avail 

ourselves of formulas (21.16) and (21.19') of [14]: 

DLL (r) = Ar 2 , (14) 

where A = e ( t ) /15v ,  eft) is the dissipation rate of the turbulent energy per unit mass of the liquid, and  v is the 

kinematic viscosity. 
Using formulas (13) and (14), we obtain an expression for the single-point moments  of the velocity gradient  

field: 

Ouj Ou t A 
Ox m Ox n - 2 [4t~Jl t~mn - ~jn~lm - t~lnf)jm 1" 

(15) 

With allowance for Eq. (15) we can easily calculate the magnitudes of the dispersions az . . . . .  a8: 

a l  = 0"5 = x / - a '  0"2 = 0"3 = ° " 4  = 0"6 = 0"7 = 0"8 = Vr-~-"  (16) 

Taking into account formulas (12) and (15), we obtain expressions for the elements of the correlat ion 

matr ix r/k that  are connected with the velocity gradient  field. To calculate the remaining correlators of the mat r ix  

rik, it is necessary to consider expressions of the form 

Oc Oc Oc -~ Ou i Oc du i 

To calculate the correlators and dispersions connected with the scalar field gradient ,  we shall employ the 

formula for the two-point correlation tensor  of the scalar field gradient  (see (IV-5.3) of [15 l) calculated for r = 0: 
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. t t t Oc 0c = _1 .rDcc (r) -3 DCC (r) rir] + __Dcc (r) r) . (17) 

OX i dxj 2 r r 

Here Dcc(r ,  t) is the structural function of the scalar field. In calculation of single-point correlators  by means  of 

Eq. (17) the value of the structural function Dcc(r ,  t) can be taken at small values of r. As is known (see (21.86) 

of [141), 

lim DCC (r) = Z (t) r 2 / 3 D .  (18) 
r-~O 

Using Eqs. (17) and (18) at r = 0, for the second-order  single-point moments  of the scalar-field gradient  we obtain 

Oc Oc _ _Z_ c5 e (19) 
OX i Oxj  3D " 

The  expression for the dispersions has the form 

a i =  = , i =  9, 10, l l .  (20) 

The  list of dispersions (16) and (20) should be supplemented with the obvious equality 

v 

For the correlators rii at i = 9, 10, 11 we obtain 

r9,  9 = r l O , l  0 = r l l , 1 1  = 1 . 
(22) 

Taking into consideration the theorems on the correlations of random scalar and vector fields given in [ 15 ] 

(p. 148), we obtain that  the correlation of the scalar field with the field of the scalar gradient  and the velocity 

gradient  is equal to zero in an isotropic flow. The  same s ta tement  is also valid for the correlat ion of the scalar 

gradient and velocity gradient:  

Oc Ou i Oc O u i _  
C yx i = 0 , c ~ = o , OXl O ~  o . (2a) 

Finally, the correlation matr ix ra/h where a ,  fl = 1 . . . .  , 12, has the form 

a \ fl 1 2 3 4 5 6 7 8 9 I0  II 12 
1 1 0 0 0 - 1 1 2  0 0 0 0 0 0 0 
2 0 1 0 - 1 / 4  0 0 0 0 0 0 0 0 

3 0 0 1 0 0 0 - 1 / 4  0 0 0 0 0 

4 0 -- 1 / 4  0 1 0 0 0 0 0 0 0 0 
5 - 1 / 2  0 0 0 1 0 0 0 0 0 0 0 
6 0 0 0 0 0 1 0 - 1 / 4  0 0 0 0 

7 0 0 - 1 / 4  0 0 0 1 0 0 0 0 0 

8 0 0 0 0 0 - 1 / 4  0 1 0 0 0 0 

9 0 0 0 0 0 0 0 0 1 0 0 0 
I0  0 0 0 0 0 0 0 0 0 1 0 0 
11 0 0 0 0 0 0 0 0 0 0 1 0 

12 0 0 0 0 0 0 0 0 0 0 0 1 

(24) 
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To calculate daf = r ~ ,  we can avail ourselves of the Gauss method [16 ] or the computer library MathCad. The 
result of the computation of the inverse matrix daf has the form 

= 

a \  3 1 2 3 4 5 6 7 8 9 10 11 12 
1 4 / 3  0 0 0 2 / 3  0 0 0 0 0 0 0 
2 0 16 /15  0 4 / 1 5  0 0 0 0 0 0 0 0 
3 0 0 1 6 / 1 5  0 0 0 4/15  0 0 0 0 0 
4 0 4 / 5  0 16 /15  0 0 0 0 0 0 0 0 
5 2 / 3  0 0 0 4 / 3  0 0 0 0 0 0 0 
6 0 0 0 0 0 16 /15  0 4 / 1 5  0 0 0 0 
7 0 0 4 / 1 5  0 0 0 16 /15  0 0 0 0 0 
8 0 0 0 0 0 4 / 5  0 16 /15  0 0 0 0 
9 0 0 0 0 0 0 0 0 1 0 0 0 
10 0 0 0 0 0 0 0 0 0 1 0 0 
11 0 0 0 0 0 0 0 0 0 0 1 0 
12 0 0 0 0 0 0 0 0 0 0 0 1 

(25) 

The determinant DI of the inverse matrix daf can easily be calculated: 

3(1,), (26) 

Formulas (26) for DI, (16), (20), (21) for ai, and (25) for daft completely.determine the 12-dimensional 
distribution densi ty function (11) in Gaussian approximation. The JPDF Pt(W, F), which is necessary for 
calculating the conditional function (10), is prescribed in the Gaussian approximation by the formula 

Pt ( I,V, r )  = 

1 1 2  12 '3} 
e x p - ~  ~ ~ d a f *  a (27) 

a = 9  3 = 9  

2 1/2 
(X/r) 02 0r90.10o'110"12 

The matrix daf, a ,  fl = 9, 10, 11, 12, can be written in the form daf = 6a3- The determinant D2 = 1. Substituting 
::It--, 

expressions (11) and (27) into (10), we obtain the JPDF Pt(G[ W, F) in the Gaussian approximation: 

1X X 
exp --  " 2 a = l  f l= l  ( 2 8 )  

Pt (G IW, r) = 
( 2 ~ ) 4 D  1 / 2  0.10.2 "'" O'8 

where D = D 1/D 2 ~ (3/4) (15/16)a. The elements of the matrix daf are determined by the upper non-identi ty block 

in (25). Using the specific values of daf, we shall write out the form of the function Pt(G t W, F) = Pt(*l, *2 . . . . .  

*al~9, *10, *11, ~12) in more detail: 

1 
Pt (*1, *2 . . . .  *s 1'9, '10, *11' '12) = (2~)4D 

0.1a2 a 8 o o ~  

{1} 
exp - 2 Q  - - f c c  ({* r} )  , (29) 

where 
4 --?- 2 16 .~2 2 _2  2 2 

\ t  ('[ * J! }) = "3 ( ~  + ' 1 ' 5  + *5) + "~" (,~-2 + *3 + ~4 + *6 + *7 + ,2) + (2 

+ 1-~ ( ' 2 ~ 4  + *3*7 + ' 6 ~ 8 )  • 

Thus, the expression for JPDF in the Gaussian approximation is determined in terms of ,2. As is seen 

from Eq. (7), the expression for Aaf(tl W, F) is an integral of the first degree of the independent variable multiplied 
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by the distribution function. Therefore,  in the Gaussian approximation all the components of the tensor 
o :g o 

Aa/~(tl W, F) are equal to zero. This circumstance compels one to use the JPDF Pt(G] W, F) for an approximate 

calculation of the tensor AaB(tl W, F), with asymmetry taken into account. 
: * o  

4. Calculation of the Conditional JPDF Pt(G [ W, F) with Account for Asymmetry. From Eq. (29) it is seen 
: t o  

that the JPDF Pt(G[ IV, F) in the Gaussian approximation is independent of the variables ~ 9 -  ~12, which 

correspond to the fields ~ and c(x-3, i.e., in the Gaussian approximation the conditional JPDF (29) is described 

as independent of the fields zi(~ and c ( ~ .  This is due to the fact that the second-order correlators between the 

velocity gradient field and the fields of the scalar and its gradient are equal to zero and in the Gaussian 

approximation the absence of correlation looks like independence. 
Since there is dependence between these fields, it should be taken into account by means of the third-order 

o 
moments, i.e., by resorting to the asymmetry in simulating the JPDF Pt(GI IV, F). For this purpose we can employ 

the Gramme-Char les  series [13 ]. In the multidimensional variant the first two terms of this series have the form 

O 3 (30) 

Here fG({~i}) is the JPDF in the Gaussian approximation, Ta/~ are third-order moments made dimensionless by 

division by the corresponding dispersion. 
=g o 

Calculation of Pt(G[ W, F) according to Eq. (30) yields 

" "  /f t/[ ",] P(G, W,F) = 1 1  ~ ,  1 + g  , 

12 12 12 
where fl ({~r}) is defined by expression (11), TI = ]E Z Z Ta~ l-I(a~ r, and 

a = l  ~ = I  7=1 

12 12 12 n 
i i  

i=1 1=1 k= l  i=1 

(31) 

(32) 
a,/5, y = 1,2, ..., 12. 

::g o o 
To calculate the conditional JPDF Pt(G[ W, F) from formula (10), it is necessary to know the form of Pt(W, F). In 
the Gaussian approximation an expression for this function is prescribed by formula (27). With allowance for the 

-qP 

third-order moments the function Pt(W, F) is written in the form 

. 

Here f2({~r})is defined by expression (27), T2 -alE__ 2 12 12 - ~. ~ Ta~ , I ' l  r , , ,  (~.. a n d  
9 fl=9 ~,=9 

12 12 12 12 H(2) 

i=9 j = 9  k=9 i=9 

(33) 

(34) 
a,/~, y = 9, 10, 11, 12. 

= ~  
Now, we will calculate the conditional JPDF Pt(G] W, F) in accordance with Eq. (10), taking into account the 

third-order moments: 
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1 1 

Here fCG({~,}) is the conditional JPDF defined in the Gaussian approximation by Eq. (29). It is seen from Eq. 
=~ 

(35) that in order to calculate the JPDF Pt(G I W, F) it is necessary to know the explicit form of the expressions 

for TI and T2, which are represented by a convolution of the matrices Ta4~ and II(a~,. In calculation ofT1 and T2 

it is convenient first to write out all the nonzero elements of the matrix Ta#y and then to calculate only those 

elements of the matrix I I ~ ,  that are needed to find Ti- 

The number of components M of the tensor Taffy can be calculated as M-- (n - I + m)l / (n  - 1)!m! (see 

formula (14.17) of [17]). This formula gives the number of combinations of n objects taken m at a time. In the 

case considered n = 12 and m = 3, i.e., three subscripts for the tensor Ta/h,, each of which can take on 12 values. 

As seen from the formula for M, the total number of components of the matrix Ta/h,, i.e., the number of single-point 

third-order moments of the fields Oui/dx j, za, and c, is rather large. It is necessary to take into account, in principle, 

the following moments: 

OU i OU k OUrn dU i dU k OC OU i 0C 0C 0C 0C ac 

OXi OX 1 OX n ' OX i rgX l OX m ' OXi OX k OX l ' ax  i oxj  ax  k ' 

a_..~C d._~C dC 2 "3 cgUi dUe dui 2 (36) 
OX i dXj c '  -~iXi c ' c ' d---~jj CgX'-~l C '  -~jXj c " 

Among all possible third-order moments there are ones that are equal to zero in the isotropic case. An 

indication of zero components is a change in their sign on rotation of the system 180 ° about any axis and mirror 

reflection relative to any plane. As a result of an analysis of all 364 moments, only nonzero ones were selected and 

among the latter the groups of moments having the same magnitude were determined. In all, the different groups 

of moments amounted to 18, among which 9 were connected with the velocity gradient, 3 with the velocity gradient 

and the scalar gradient, 4 with the velocity gradient and the scalar, 1 with the scalar gradient and the scalar, and 

1 only with the scalar. Direct calculation shows that the groups of moments connected only with the velocity 

gradient, only with the scalar gradient, with the velocity gradient and the scalar, with the scalar gradient and the 
scalar, and only with the scalar make a zero contribution to the value of the conditional moments of the velocity 

gradient. 
To calculate the explicit form of the function TI, J-- 1, 2, it is necessary to write out the values of the 

components of the tensors I I ( ~  whose indices coincide with the indices of the nonzero components of the tensor 

Ta/~. Each of the above-mentioned groups of tensor components involves components that have the same value. 

reasonable to write out the corresponding sums of the components of the tensors II0~,  since these Therefore, it is 

sums must be multiplied by the same value of the corresponding component of the tensor Ta/~ to calculate Ti. We 

shall denote these sums by the symbol Hi: 

0) (37) II i = E  Ha/~(i) ,  i =  1,2 . . . .  , 1 8 ,  

where II(,~(i) are the tensors rI~ to which identical single-point third-order moments Ta/~ = ai correspond. Thus, 

the expressions for T 1 and T 2 can be written in the form 

18 18 

i=1  i=17  

We replace expression (35) for Pt(G[ W, F) by an approximate expression: 

(38) 
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× (1 - T2/6) ----fCG ( { ~ , } )  [I + (TI - T2)/6] =fCG [1 + T ( ~ ) / 6 ] ,  (39) 

16 
where ~r(~) = TI - T2 = Z aiH i. Here a i = ai(t) are third-order single-point moments of the velocity gradient, the 

j=l 
scalar gradient, and the scalar. Substituting the values of H i into the expression for T(~), we obtain 

(x) = a 1 [0] + a 2 [0] + a 3 [0] + a 4 [0] + a 5 [0] + a 6 [0] + a 7 [0] + a s [0] + 

+ a 9 [01 + al0 - - ~ 1  - - 5 ~ 5  ~9 + - - ~ !  -- ~ 5  ~10 + 2(~1 +~5)  + 

+ a l l  - - 5 ~ 1 - - 3 ~ 5  ~9 + - - 5 ~ 1 - - 5 ~ 5  ~10+(--2~1 -- 2~'5)~1 + 4 ( ~ 1  +~5)  + 

+ a12 -- g(~2 +~4)~9~10-  3(~3 +~7)~9~11 -- ~(~6 +~8)~10~11 + 

+ al3 [01 + a14 [0] + a15 [0] + a16 [0] .  (40) 

Thus, formulas (39), (40), and (29) prescribe the conditional probability density function of the velocity 
gradient with allowance for asymmetry. 

5. Calculation of the Components of the Tensor of the Mean Conditional Velocity Gradient. The tensor of 
the mean conditional velocity gradient is defined by formula (7). We write it in a form more convenient for further 
USe: 

. 

A ~ ( t  Iw,  r ) ;  ~ Iw,  r =v,-X f . . . f  d~ 1 ...d~g~iPt(~ 1 . . . . .  ~81~9,~10,~11, d~12). (41) 

We rewrite Eq. (41) explicating the form of the JPDF by means of (39) and (29): 

(z~)  4 f ... f ~ 1  -.- e~s exp - -2 Q (~) ~i 1 + -6 p (~) ' 

(42) 
i =  1,2 . . . . .  8 .  

The quadratic form Q(~) is determined by formula (29) and the expression for T(~) is determined by Eq. (40). 
To calculate the components of the tensor A l l ( t l  IV, F), we assume that ~i -" ~l on the right-hand side of 

Eq. (42). In calculation of the 8-dimensional integral in Eq. (42) it is convenient to go over to integration variables 
in which the quadratic form Q({~a}) would acquire the canonical form of a sum of squares. The matrix Sa~ of the 

/ , ,  ~ 8 

linear transformation of S that reduces Q({~a}) to the canonical expression SQ({~a})  = Q(~/a) = X r/2 has the form 
i=1 

s ~ =  

a \ f l  1 2 3 4 5 6 7 8 

1 1/2 0 0 0 vrff/2 0 0 0 

2 0 av57~ o v~Tg 0 0 o 0 

3 o o ~ o o o v ~ / 8  o 

4 o 3 V ~  o - s d ~  o o o o 

5 1/2 0 0 0 - x/3/2 0 0 0 

6 0 0 0 0 0 ~ 0 

o o ~ o o o - ~15 /8  o 

s o o o o o 3v5-~ o -VsVsVsVsVsVsVsVsVsV~ 

(43) 
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The  Jacobian of transformation (43) is equal to the determinant  of the matrix Sail: 

• is = II sail 11 = 45 ~/3 /128 .  (44) 

After the transformation of the integration variables and substitution of the values of Js and D I/2 into the expression 
.._> 

for AI 1 ( t /W,  F) we obtain 

where T]({r/il}) is the expression ~lT({~}) t ransformed to the variables {r/il}: 

[½ 12  z 2 2] 

[½ 1 2 2 2 22  2] 
_ a l l  (r/2 _ r/2) ~2 + 2 (r/1 + r/S) ~10 + r/ ,~ll  - 2r/l + a12 [0 ] .  (46) 

Using the integrals 

I 0 =  f exp - d r / = V ' - ~ - ,  I 1 = f r/ 
- - 0 0  - - 0 0  

exp - dr/ = X / -~ ,  

+ - ,  
12 = f ,1 exp - d r / =  3 x / - ~ ,  (47) 

- . )  

we obtain an expression for the component  A l l ( t / W ,  [') in the form 

-) v ~  2 2 
All (t I W, 1") = At(W ) = - -~-- 2a10 [(~2 + ~10 + ~11) - 3 ] .  (48) 

In writing expression (48) we adopted the hypothetical  equality of the moments  alo and a I I- 

A similar calculation leads to the result 

A22 (tl W, r') = All  (tl W, F) = A t (W). (49) 

From considerations of symmetry  we obtain that  

A33 (t[ W, F) = A t (W).  (5o) 

Calculation by means of formula (42) shows that all the off-diagonal elements of the tensor  Aail(tl W, F) 

are equal to zero. Thus,  we obtain 

Aail (tl w ,  r )  = 6 ,¢  ~ A t (140, (51) 

where 

3D ; 2  
A t (IV) = B ( t ) - ~ C ( t )  W-,  

/ . K ' )  
0 2 )  

alo alo (53) 
B ( t ) -  2 '  C ( t ) -  6 "  
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The dimensionless third-order single-point mixed moment of the velocity gradient and the scalar gradient 

am(t) must be prescribed as a function of time. It can be measured or calculated using results of direct numerical 

simulation of turbulent fields: 

a l 0  = 

(Oul/Oxl) (Oc/dxl) 2 

1 / 2  

(Oul/Oxl) 2 (Oc/Ox~) 2 

(54) 

Taking into consideration the physical meaning of the moment ato(t), we write the formulas for B(t) and C(t) in 

the form 

Suc (t) Suc (t) (55) 
B ( t )  - 2 , C ( t )  - 6 

where Suc(t) is the asymmetry of the joint probability density function of the magnitudes of the velocity and scalar 

gradients. The function Svc(t) can be expressed in terms of the third derivative of the third-order structural 

function of the velocity and scalar fields DLCC(r, O, the dissipation rate of the intensity of turbulent scalar 

fluctuations %(t), and the dissipation rate e(t): 

SUC = 

l ,H 
-~ DLC c (0, t) 

(X (t)/3D) (e (t)/15v) 1/2" 
(56) 

An expression for the mixed m o m e n t  (OUl/OXI)(OC/OXl) 2 in terms of D~cc(O, t) can be obtained by comparing 

formulas (12.146) on p. 69 of [14] with the formula DLCC(r) = 4BLc,c(r) on p. 367 of [14]. 

With allowance for what has been said above concerning the tensor of the conditional velocity gradient, we 

write the final result in the form 

Aafl (t I W, F) = = cSafl ~ lSv ) A t (W) , (57) 

where 

DW2" (58) 
A t W = Suc (t) 1 

2 Z (t) 

Note that averaging of the conditional velocity gradient over all values of the scalar gradient must give the 

usual mean value of this quantity, which is equal to zero in an isotropic flow. It is not difficult to note that formula 

(58) satisfies this condition. 
All the functions needed to calculate Aafl(tl W, F) can be obtained from a closed system of equations for 

two-point or spectral functions that describe the distribution of turbulent energy and of the intensity of scalar 

fluctuations over the spectrum of length scales or over the spectrum of wave numbers. 

6. Calculation of the Conditional JPDF Pt(XI W, F). As is seen from Eq. (10), in order to calculate the 

conditional JPDF of the magnitude of the components of the tensor of the gradient of the scalar gradient in the 

Gaussian approximation it is necessary to calculate the functions Pt(X, W, F) and Pt(W, F) in this approximation, 

with the second function being prescribed by formula (27). The general form of the function Pt(X, W, F) in the 

Gaussian approximation has the form 
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10 10 ~fl} 1 E  E .,(3) 
z~ ~ exp 2 a=l  fl=l (59) 

P t ( X , W , F )  = - 5 1/2 (3) (3) .,(3) 
(ZTQ 03 ... 0.1 0"2 "~10 

The  symbols ~i, i = 1, 2 . . . . .  10, denote  the independent  (made dimensionless by division by their dispersions) 

variable functions Pt(X,  W, F) corresponding to the components of the fields dza/dxfl, zi, and c. The  correspondence 

be tween these  componen t s  and  the symbols  ~i is p rescr ibed  by the  following re la t ionships :  dZl/dX 1 o ~1, 

dZl/dX 2 o ~2, OZl/OX3 ~ ~3, Üz2/dx2 o ~4, dz2/Ox3 o ~5, dz3/Ox3 o ~6, Zl o ~7, z2 "" ~8, z3 o ~9, c o ~10. The  

variables dz2/dXl,  Oz3/dXl, dz3 /dx  2 are expressed in terms of o ther  variables: dz2/dx  I = dZl/OX2, Oz3/dx I = 

dZl/0x3, dz3/dx2 = Üz2/Ox3. 

The  dispersions a! 3), i -- 1, 2 . . . . .  10, are interpreted by the formulas 

o = , i = 1 , 2  . . . . .  6 ,  = z a , 

J = 7 , 8 ,  9 ~ ( 3 ) ,  ~'1o = (--)1/2c2 

(60) 

The  inverse matr ix is 

-1 
e (3) .(3) (61) 

~ a = ~ a / a a ,  a =  1 ,2  . . . . .  10,  (62) 

where ~'a are the dimensional variables. 

The  total of the correlations to be calculated in the matrix r ~  is n = [(10-10) - 10 ] /2  = 45. Th e  symmet ry  

of the matrix and the unitariness of its diagonal elements are taken into acco__unt in the count. To fill in the matr ix  

r/k it  is n e c e s s a r y  to c a l c u l a t e  c o r r e l a t i o n  m o m e n t s  of  t h e  f o r m  c 2, cz--], c(dzi/Oxj) , zizi, za(Ozi/Oxy), 

(OZa/OX~)(Ozi/Oxi) and to make dimensionless each of the correlators by division by the corresponding dispersion. 

The  correlator  rl0,10 is defined by the formula 

q0A0 = 1. (63) 

The  correlators of the form ~ = c(Oc/dxi) -- 0, i = 1, 2, 3 (see (23)). The  correlation moments  ziz i are  expressed 

by means of Eq. (19): 

z-~ = ~ 6ij .  (64) 

For the dispersions a! 3), i = 7, 8, 9, we have 

a~3) = vr~Z / 3 D  . (65) 

According to Eqs. (64) and (65) the correlators r~3~ = r~3~ = rg3~ -- 1, and the correlators r~3,] = r~3,~ = r~3,~ 

= 0. The  correlators of the form c(Ozi/dxj) in the isotropic case are expressed in terms of the correlators zffi: 

Ozi (66) 
¢ = - z f i  = - ( z / Z D )  
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This equality, with allowance for the formula al30 ) = vr-~c ~ ,  yields 

r(3) c (Ozk/Ox~) 
i,10 = (3) (3) = -  

ol0 (ri 3D (~-~)l /2ai(3) '  
i = 1, 4, 6 .  (67) 

To calculate the correlation moments of the form (Ozi/OXj)(OZk/OXl) , w e  employ the formula for the two-point 
correlation tensor of the scalar-field gradient (17). Let us differentiate Eq. (17) with respect to x) and x i and assume 

P-- 0. As a result, we obtain a formula for calculating the single-point moments (dz i /dx j ) (dZk /OXl ) :  

Oz i ( ~ )  Oz k ( x-~) 1 r~(iV) 
OX] OX l = -- -6 ~'CC (0) (~il ~k] + (~kl ¢~i] + ~ik ¢~l]) " 

(68) 

D ~  ) is the fourth derivative of the structural function of the scalar field. As is known [14 ], this quantity is Here 
always negative. In the equation for the mean square of the gradient of scalar-field fluctuations this function 

describes its decrease due to molecular diffusion (see formula (15.13) of [14 ]). 

Let us introduce the notation 

r~(IV) (0 ,  0 / 2  = w (69) 
- -  L ,  C C  

Using Eq. (68), we calculate the dispersions: 

(7~3)=V~ -, i = 1 , 4 , 6 ;  a ~ 3 ) = ~ ,  j = 2 , 3 , 5 .  (70) 

Using Eq. (68), we can find the elements of the correlation matrix that describe the correlations of the gradient of 

the scalar-field gradient: 

r(3) 1/3 
.(3) .(3) 

14 = ' 1 6  = ' 4 6  = 
(71) 

r(3) .(3) .(3) .(3) .(3) .(3) .(3) .(3) .(3) .(3) .(3) .(3) = 0 
12 = ' 1 3  = ' 1 5  = /23  = ' 2 4  = ' 2 5  = ' 2 6  = ' 3 4  = ' 3 5  = ' 3 6  = ' 4 5  = ' 5 6  

(72) 

Differentiating Eq. (17) once with respect to xj,  we will obtain a formula for calculating the correlation moments 

of the scalar gradient and the gradient of the scalar gradient: 

As a result, 

Oz i ( x ) --,, (73) 
oxj z~ ( x ) = 0 .  

r(3) .(3) .(3) = 0 i = 1, 2, 6 (74) 
i7 = "i8 = "i9 , " " '  " 

Using formulas (67) and (70) for i = 1, 4, 6, for the correlators r!3~0 we obtain 

r (3) X / 3 D  (75) i A 0 = -  - T ,  i =  1 , 4 , 6 .  

Having used the expressions starting from formula (63), we fill in all the cells of the correlation matrix ~ :  
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dZl OZl Oz 1 Oz 2 dz2 dz 3 
Ox 1 Ox 2 Ox 3 Ox 2 Ox 3 dx 3 z I z 2 z 3 c 

dZl 

dXl 
0 0 1 / 3  0 1 / 3  0 0 0 - T 

OZl 
0 1 0 0 0 0 0 0 0 0 

OZl 

Ox 3 
0 0 1 0 0 0 0 0 0 0 

Oz2 
1 / 3  0 0 1 0 1 / 3  0 0 0 - T 

Oz2 

Ox3 
0 0 0 0 1 0 0 0 0 0 

Oz3 
1 / 3  0 0 1 / 3  0 1 0 0 0 - T 

z 1 0 0 0 0 0 0 1 0 0 0 

z 2 0 0 0 0 0 0 0 1 0 0 

z 3 0 0 0 0 0 0 0 0 1 0 

C - T  0 0 - T  0 - T  0 0 0 1 

(76) 

The  inverse matrix d(a3; can be calculated by the Gauss  method [16]  or using the  computer library 

MathCad. The result for d(a~ has the form 

OZl Oz2 #z2 Oz 3 

OXl Ox2 Ox3 dx2 Ox3 Ox3 

dZl 6 - 9 T  2 - 3 + 9 T  2 3 + 9 T  2 
Ox---{ 5A 0 0 10A 0 10A 

OZl 
0 1 0 0 0 0 

Ox2 

0Zl 
0 0 1 0 0 0 

Ox3 

0z2 - 3  + 9 T  2 6 - 9 T  2 - 3 + 9 T  2 
Ox"--2 10A 0 0 5A 0 10A 

Oz2 
Ox"--3 0 0 0 0 1 0 

Oz3 - - 3 + 9 T  2 - 3  + 9 T  2 6 - 9 7  `2 
0 0 0 

dx 3 10A 

OZl OZl 

z I 0 0 0 

z 2 0 0 0 

10A 5A 

0 0 0 

0 0 0 

z 3 0 0 0 0 0 0 

3T 3T 3T 
c s--S o o s--£ o 5--£ 

z 1 z 2 z 3 c 

3T 
o o o T£ 

0 0 0 0 

0 0 0 0 

3T o o o ~X 

0 0 0 0 

3T o o o ~ 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 / A  

(77) 

Here the notation A = 1 - 9T2/5 was used. The determinant of this matrix is equal to 
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D 3 = 20 (1 - 9T2/5)/27. (78) 

Expressions for Pt(X, IV, F) are prescribed by formulas (59), (65), (70), (77), and (78). The function 

Pt(W, F) is expressed by formulas (27), which with allowance for the other numbering of the variables have the 
form 

Pt ( W, F) = 

f 1 10 lO } . / (3) 
exp -~ E E - 4 < ,  

a=7 fl=8 

2 1 / 2  
(2.7Q D 2 0"70"8090"10 

(79) 

d ( 3 f l ) = 6 a f l ,  a, f l = 7 , 8 , 1 0 ,  D 2 =  1. 

L e t  u s  s u b s t i t u t e  i n t o  E q .  (10 )  t h e  e x p r e s s i o n s  f o r  P t ( X ,  IV, F )  a n d  P t ( W ,  F) .  A s  a r e s u l t  w e  h a v e  

(80) 

et (x  Iw,  r) = 

1 10 10 ~fl} exp ~ ~] ~] '7(3)~ -- u'cr~ 9a 
a = l  f l= l  

t )'2"g'3 "u2"~1/2 (3) (3) (3) (3) (3) (3) 
(71 (72 o" 3 o 4 o'5 t76 

(81) 

Here D3 = D3/D2 = 20A/27. The matrix ~a~ has the form 

Oz I 8z I 8z I Oz 2 8z 2 az 3 

Ox'---1 Ox 2 Ox 3 Ox'---2 Ox 3 Ox 3 c 

0Zl 6 - 9 T  2 - 3 + 9 T  2 - 3 + 9T 2 3T 
OX---~ 5A 0 0 10A 0 10A 5"-A 

Oz I 
0 

#x 2 
l 0 0 0 0 0 

Oz 1 
0 0 1 0 0 0 0 

Ox 3 

0z2 - 3 + 9 T  2 6 - 9 T  2 - 3 + 9T 2 3T 
Ox'--2 10A 0 0 5A 0 10A 5-A 

Oz 2 
0 0 0 0 1 0 0 

Ox 3 

Oz3 - 3  + 9 T  2 - 3 + 9 7  `2 6 - 9 T  2 
0x--3 10A 0 0 10A 0 5A 

3T 3T 3T 
c s-~ o o 5-~ o s--£ 

3T 
5A 

( l / a )  - 1 

(82) 

The magnitudes of the dispersions ~3), i -- 1, 2 . . . . .  6, are prescribed by formulas (70). Thus, formulas 

(81), (82), and (70) completely prescribe the form of the conditional JPDF of the magnitudes of the components 
of the tensor of the gradient of the scalar gradient in the Gaussian approximation. 

7. Calculation of the Components of the Tensor Nai3(tl~V, F). According to Eq. (8), this calculation 

presumes averaging of the tensor expression XaiXf l i  by the conditional distribution function Pt(X114I, F) whose 

form in the Gaussian approximation is written out in the previous section. As seen from Eq. (8), each component 

of the t e n s o r  XaiXfli is a sum of products of derivatives of scalar gradient components: Since Pt(XI W, F) depends 
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only on six dimensionless variables corresponding to six components of the derivatives, it is worthwhile to write 

the tensor XaiXfl i  componentwise in terms of these dimensionless variables: 

1 
c~ Xni = "~ CO × 

× 
3+, + + ++ + d 

if3- 2122 + "f3- +2+4 + +3+5 

¢3 +1+3 + +2+s + v'3++3+6 

+122 + V'~ +2+4 + +3+5 
+~ + 3+] + +2 

5 

+3+2 + ~ +4~5 + x/~r ~5+6 

Vr3-+1~3 4" ~2~5 4- ~ ~5+6 

+2+3 + vr3- +4+5 + if-3- +5+6 
+2 2 3~2 

3 + ~ 5  + 

(83) 

Comparing the expressions for the components of the tensor XaiX~i with matrix (82) for the elements 

~aa; in the exponent of the conditional JPDF, we come to the conclusion that all the off-diagonal elements of 

matrix (83) will make a zero contribution to Nafl(tl 1¥, F) after averaging, i.e., we obtain 

N,#3 = (t I W, r') -- c~,#3N ~ (t[ ~ ,  r') (84) 

(summation is not taken over the subscript a). Here 

--,. + _  :~ + 32~ + ++ + 222 
(/9 N,~(tlw, r ) = + f  dX&~(+)Pt(X I w ,  r ' ) ,  A,',+ (+) = ,+z z + 3+] + ++ 

d + 225+ ad 
...++ + .-,. 

Using Eq. (81) for Pt(XI W, F), we write down an expression for Na(tl IV, F) in the form 

N~ (tl ~', D - ~ f . . .  f d ' ~ l  ,.. d~6 ~a  (+) exp { 1 7 7 a~fl} 
3 (z,-+)% - °=12 e:12 • 

(8s) 

We will find the transformation of the integration variables +l, 22 .. . . .  ~6 that brings the quadratic expression 

Q(~) = d(a~+a+fl to a canonical form. The form of this transformation can be found by calculating the main directions 

of the (6 x 6) fragment of matrix (82) connected with the variables 21, 22 . . . . .  26: 

5V~A+I 2+4 22 22 23 +a 2 4 -  5X/SA+I + 24 + 26 

3 3 3 3 vr3 - 

+1 +4 +6 (86) +s=+5 ,  2 6 = - -  + -  + - -  
3 3 vr3 - 

In the variables +i the quadratic form is 

Q ( { , , } )  : y+ 
i=I 

+2 3T _~ 

Here F -- F/(c2) 1/2. The matrix Na(+) transformed to the new variables acquires the form 

(87) 

({+i})-- 
2 2 5A~l 2/3 + 4+ 2/3 + 7/2 + q3 

2 2 2 2 
5A+ /3  + +4/3 + +6 + +2 + +5 

2 2 2 2 5Arl 2/3 + r/4/3 + +6 + +3 + 25 

(88) 
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In writing (88) we omit cross terms that make a zero contribution in integration. The Jacobian of transformation 

(86) is 

s = 2 sv3S/3 v ~ .  (89) 

With allowance for Eqs. (87)-(89) the expression for Na(tl W, F) can be written in the form 

N , ~ ( t [ W , F ) = ~ e x p  - 2  - 1 F I a ( F ) ,  a =  1 , 2 , 3 ,  (90) 

where 

2 3TF } 
1 f fdrl  1 d r l 6 N a ( { r l j } ) e x p  _ l  ~ r]i 7"]1. 

Ia - (2~) 3 . . . . . .  2 i=1 2 5vr~ 

Calculation of the integrals leads to the result 

N a (tl W, r) = N t (F) = "CC -- -- (t)J" 

As is seen from Eq. (91), the tensor of the conditional rate of dissipation of the dissipation of scalar fluctuations 

depends not on the magnitude of the gradient, but only on the magnitude of the scalar. The fourth derivative of 

the two-point structural function of the scalar turbulent field over the spatial variable r at its zero value enters the 

definition of the function Nt(F) in two ways: D ~ ) ( 0 ,  t) enters the expression for the function Nt(F) and the 

definition of the correlation function T(t), which, with allowance for formulas (75) and (69), can be written in the 

form 

T (t) = V"2-X (t) 
( n(iv) (0, t)) i / 2 .  (92) 

30 - c 2 (t) "-'cc 

Here X(t) is the dissipation rate of scalar fluctuations, c2(t) is the mean-square value of the intensity of scalar 

fluctuations. 

For complete determination of the function Nt(F) it is necessary to prescribe the quantities D~v)(0, t), 

c2(t), and x(t). This can be done by solving a closed system of equations for the structural function. 

8. Calculation of the Components of the Tensor X,~(tl W, F). The calculation of the components of the 

mean conditional tensor X,~(t[ W, F) according to (9) presupposes first-degree averaging of the tensor X,~ by the 

conditional distribution function Pt(XI W, F). The form of this function in the Gaussian approximation is given in 

Sec. 6. We write out the components of the tensor Xa¢ in terms of the dimensionless variables: 

I ,, e2/  e3/  I 
x ~ = ¢ ~  ~2/v~ G ~s/v~ (93) 

~a/v~ ~5/v~ ~6 

Comparing the expressions for the components of the tensor Xafl with matrix (82) for the elements ~a~ in the 

exponent of the conditional JPDF, we come to the conclusion that all off-diagonal elements of matrix (93) will make 

a zero contribution to the conditional tensor Xafl(tl W, F) after averaging. The nonzero contribution is provided by 

the presence of the nonzero components ~ :~  in the matrix d (3). Thus 

x ~  (tl ~", F) = ~ x a (tl ~z, F) (94) 

(there is no summation over the subscript a).  Here 
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X~( t lW,  F)=d-G f d X X a ( ~ ) P t ( ~ l f f V ,  r ) ,  2,~(~)= 

Using Eq. (81) for Pt(XI W, F), we write the expression for Xa(t[ W, F) in the form 

[ 7 7 -  
x~(tlw, r ) -  ~ f . . . fa¢j  . . . a ¢ 6 ~ a ( ~ ) e x p l -  1 E Y. ~(3) } ~ .  (95) 

The transformation that brings the quadratic expression ~3a)~a~t~ to a canonical form was found in Sec. 7 and is 
represented by formula (86). The quadratic form is prescribed by Eq. (87). The transformation of the matrix Xa(~) 
to the variables {r/} has the form 

xa  [8 (,i) 1 = x,, (,1) = 
5 v r ~  - r / l / 3  - -  2 r / 4 / 3  

5vr~- r/ l /3 + r/4/3 + r/6/3 
5vr~ r/ l /3 + r/4/3 -- r/6/3 

(96) 

The terms proportional to r/4, r/6 give zero in integration. Therefore 

Xa (rl) = X (rl) = x / - ~ r h / 3 ,  a =  1 , 2 , 3 .  (97) 

The Jacobian of the transformation from the variables {~} to the variables {r/} is prescribed by Eq. (89). With 
account for Eqs. (97) and (89), Eq. (95) takes the form 

3 exp - - 1 J" ... J" dr h ... dr/6r h 

I 1 ~ r /2_ 3T _.F } × e x p  ( 
i=1 ~ ) 1 / 2  'h • 

X 

(98) 

After calculation of the six-dimensional integral we obtain 

X t (F) = K t (F)exp { -  a (T) F 2}. (99) 

Here we use the notation 

A 

Kt (r)  = - x (t) r ,  
6 D ( ~ )  1/2 

(lOO) 

a (T) - 27T2 (101) 
8 [S --  9 r  2 ] 

With allowance for Eqs. (94), (98), and (99) we write 

g~a (tl ~', F) = 6~fl x t ( F ) .  ( io2)  

For complete determination of the tensor of the conditional second derivative Xa(tl W, F) it is necessary 
to prescribe the quantities D ~ ) ( 0 ,  t), C2(t), and Z(t). All these functions can be calculated by solving the system 
of equations for the functions p~C)(p) and Pt(P). 
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Let us give critical consideration to the result of calculation of the mean conditional gradient  of the scalar 

field fixed in Eqs. (99)-(102).  The  mean conditional value of the second derivative of the scalar turns out to be 

negative with respect to the value of the scalar field F at all admissible values of the correlation function T(t). As 
is seen from Eq. (66), the negative sign of the mean correlation between the scalar field and the components  of its 

second derivative is a general  result. The  reason for such behavior of this correlation is evident when a sinusoid is 

a typical realization of the turbulent  scalar field. In this case the second derivative is a sinusoid with the opposite 

sign. At any level of the scalar field c(~, t) = F this situation is preserved. This  ensures a negative sign for the 
A 

function Kt(F),  al though in deriving the expression for the conditional mean value of the second derivative the 

assumption of a Gaussian JPDF of the scalar and its derivatives was used. Note that this assumption may turn  out 

to be incorrect, as well as Eq. (100) for Kt(F).  

We clarify the foregoing s ta tement  using another  typical realization of the scalar field. We assume that  this 

realization is represented  by a function of the form 

[ x~ 2n+ 1 
c (x, t) = a (t) [sin X) ' (103) 

where n is a certain parameter ,  an integer. When n > 0, the function c(x, t) changes its form so that  a segment  

with a positive second derivative appears in it. But the segment with a negative second derivative is kept so large 

that a negative mean correlation is ensured between the scalar field and  its second derivative for a period. This 

turns out to be valid at any  value of n > 0. Despite of the negativity of the period-average correlat ion between the 

fields c and c ~ ,  the value of the second derivative at certain values of the scalar field c(~,, t) -- F may  turn  out to 

be positive, i.e., the presence of typical realizations (103) in a turbulent  flow may  lead to a form of the expression 

for Kt(F) for which the conditional second derivative of the scalar field will be positive at certain values of the scalar 

field. 
Note that  expression (100) for Kt(F) is valid only for the initial stage of mixing, when the scalar field 

consists mainly of diffusion layers that  separate regions with constant  values of the scalar and  therefore  are  close 

to sinusoidal. At a later  stage of mixing the character  of realization acquires a more pointed shape typical of 

realizations with a large excess (see Fig. 64 in [18 ]). 

It is possible in principle to take into account the excess in the JPDF of the scalar and  its derivatives by  

means of a G r a m m e - C h a r l e s  series (see Sec. 5). But this approach is complicated substantial ly by  the absence  of 

information on the four th-order  cumulants of the fields of the scalar and its derivatives. In the present  work an 

at tempt is made to calculate the function Kt(F) on the basis of the form of a typical realization of the scalar field 

(103) and thus to take into account somewhat the excess of the scalar field and  its derivatives. 

It is possible to obtain statistical information on the evolution of the parameters  of the typical realization 

a(t), Mt),  n(t) by using the solution of an auxil iary system of equations for p~C)(p) and Pt(P). Simple calculations 

allow one to connect  the parameter  aft) with the dispersion c2(t): 

a ( t ) =  (c  2 (t)N ( n ) ) 1 / 2 ,  (104) 

where 

N (n) = vr~ C (2n + 1) 
F ( 2 n + 3 / 2 )  ' 

(105) 

F(x) is the gamma-function.  
For  the cor re la to r  of the  scalar  and  its second derivative,  which is de f ined  by  the fo rmula  T(t) = 

~ ) t / 2 ( ~ ) 1 / 2 ,  on the basis of realization (103) it is possible to obtain the express ion C(X, t) Cxx(X, t) / (c2(x, 

(2n + 1)d/ 116n2- 11 / 
T (t) = - (4n - 1) [ 12n 2 + 4n - 1 [ " 

(106) 
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Since the statistical quantities c2(t) and T(t) are to be calculated from an auxiliary system of equations, then using 

Eqs. (104) and (106) it is possible to evaluate the parameters a(t) and n(t) at any instant of time. Th__e parameter 

2(0 is related to the dissipation rate of the intensity of scalar fluctuations by the formula 22(t) = 6DcZ/z(t). Since 

z(t) is calculated from an auxiliary system of equations, the parameter 2(t) must be calculated as a function of time. 

Using Eq. (I03), we write in explicit form a relation for the conditional probability density of the values 
of the second derivative of the scalar: 

15 t -:(SJ = 

( 1/2 

/i z 

2nl) [ A 2]} 
N (n) (2n + 1) (F/N (n))2n+l 2 2n - (2n + 1) (F /N (n))2n+l . 

Using Eq. (107), it is possible to calculate the mean conditional magnitude of the second derivative: 

(107) 

- -  1/2 
Kt(F)= f xP(xlF)dx=x(t)r(F)/6D(c 2 ) , 

(108) 

where 

2nl I 2] 
tc (F) = N (n) (2n + 1) (F /N (n)) 2n+1 2n -- (2n + 1) (F /N (n)) 2n+l . (109) 

A 

Note that x(F) at n = 0 takes the form r(F) = - F ,  and Eq. (108) becomes identical to Eq. (100). Thus, 

Eq. (108) for Kt(F) can be considered as a generalization of Eq. (100) that to a certain extent takes account of the 

excess in the probability distribution of the values of the scalar and its second derivative. The importance of the 

proposed generalization will be revealed in solution of the equation for the JPDF and a system of equations for the 

conditional dissipation rate (CDR) and the single-point probability density of scalar fluctuations. 

9. Equation for the JPDF with Account for the Results Obtained for the Tensors A, N, X. Using the results 

of calculations of the tensors A~( t l  W, F), Nal3(tl IV, F) and X(tl W, F) given in Secs. 5, 7, and 8, we write Eq. (6) 

for the JPDF of a reacting scalar and its gradient in a closed form, having represented it preliminarily in the 
symbolic form 

o? t ( w ,  r) 
Ot - (1) + (2) + (3) + (4) + (5) + (6), (110) 

and we explicate the specific form of each term on the fight-hand side of this equation with account for the obtained 

results of calculation of the tensors A, N, X. The first term on the right-hand side of Eq. (110) remains unchanged: 

0 2 
(I) = - ow 2 ~ Pt (~, r). (111) 

Using formula (57) for A~(t [  14, F), we obtain the following equation for the second term: 

1/2 
owa [wa6a~ At(w)Pt(W'F)l= ~ lSv) o--~ × 

× [W a A t (W) Pt (W, F) ] = l, 15v] 3 + W a A t (W) Pt (~', F).  

Taking into account Eq. (58), we find 
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(2)=  15v ) 3+w- -ff B (t) - C (t) W 2 Pt (W,  F) . 

Taking account of formulas (84) and (91), we write an expression for the third term on the right-hand side of Eq. 
(110) in the form 

(3) = -- D 
02 ~ 02 Pt(~V, F) 

OW~OW# [8~ Nt(F) Pt(W' r ) l  = - DNt(F ) OW a OW a 

= - D g t ( r  ) 
c32pt (~ ,  [,) Op t (~r, F) [ 

014,,2 + 3 W OW 

Thus 

F _  
(3) = - DN t (1-') 1 2-- O 

[w OW 

- "  

+ Pt (IV, r ) .  (113) 

The function Nt(F) is defined by formula (91). 

Using formula (102) for the tensor Xafl(t [ W, F), we transform the fourth term on the right-hand side of 
Eq. (110): 

02 
(4) = - 2D ~ I W a c~afl X t (F) Pt (W, F) ] = 

= - 2 D  x t ( r  ) 3 P t ( W , F ) +  w-d-~Pt(W,F ) . 

Thus 

( 4 ) = - 2 D  X t(F) 3 +  W~-~  (114) 

Differentiating with respect to the variable F the fifth term on the right-hand side of Eq. (6), we obtain 

( 5 ) = - [ ~ + ~ o ( F ) - ~ F ] P t ( W , F ) .  (115) 

The sixth term takes the form 

( 6 ) =  O(°OF---(~ [3 + W--~--~] Pt (~Z,F ) . (116) 

We note that in none of the terms on the right-hand side of the equation for the JPDF is there a dependence 
on the direction of the vector IV. Therefore we can assume that the equation obtained serves for finding Pt(W, F), 
i.e., the joint probability density of the scalar and the magnitude of its gradient. Allowing for this remark and 

formulas (i 11)- (116), we can write a closed equation for the JPDF Pt(~z, F) in the final form: 

= - -  + 3 +  x 

0t °r2 k 15~ ) 
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X U (t) I ---" Pt(W'F)" - DN t(F) + 

OW 

- 2D o-~ {Xt (F) [3 + 

OF Pt (W, F).  

It must be solved under the following initial and boundary conditions: 

W~W ] Pt(W, l-')} - 

Pt ( W, O[t=O = Po (14, F) , 

Pt (W, [') -- 

(117) 

( l l 8 )  

Pt (W, r )  l w=~ = o ,  Pt (IV, F) I Irl--rma~ = 0 .  (119) 

Here Po(W, F) is the initial form of the JPDF; F,,ax is the maximum value of the scalar fluctuation, which is 

determined by the initial condition. 
In Eq. (117) the function Sue(t) is determined by formula (56), Nt(F) by (91), (92), Xt(F) by (99), (108), 

(I09), and w (F) is prescribed in selecting a specific mechanism of the chemical reaction. 
10. Calculation of Auxiliary Functions. As is seen from the formulas that determine the functions Sue(t), 

Nt(F), and Xt(F), for their calculation it is necessary to know the time evoluation of the following single-point 

functions: 
1) t(t) ,  the dissipation rate of the turbulent energy of the velocity field; 
2) z(t),  the dissipation rate of the intensity of turbulent fluctuations of the reacting scalar; 

3) ]i:2-(t), the dispersion of the turbulent scalar field; 
4) Dix:c(r, t), the third-order structural two-point function of the turbulent fields of the velocity and the 

scalar; 
5) D~V)(0, t), the fourth derivative at r -- 0 over the distance r between two points from the second-order 

structural two-point function of the turbulent scalar field. 
The evolution of these functions can be calculated, having related them to the corresponding spectral 

functions or the functions Pt(r) and P~C)(t ) that describe the distributions of turbulent energy and of the intensity 
of scalar fluctuations over various length scales. These functions are related to the correlation, structural, and 

spectral functions by the following equalities: 

o B  (r ,  t) = t o o  (r ,  t) _ 
P t  (r )  = --  

Or 2 dr 

(,., = ___o .c :_I_o <r, 0 = 7 (kr) COS (,,:r) 1 
Or 20r o c t  0 [ (kr) 2 - kr J kEc(k ' t lak" (121) 

The closed system of equations for calculating these functions has the form 

Ot - Or 2v + 2y ~/ FP t ( 7") d -~r + Pt (r) , 
o 
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O-----f~ - Or 2 0  + 2fl rf ~l F p  t ( F )  d -~r + (r) - 2 ~r B (r, t) , (123) 
0 

V = 0 . 2 4 ,  f l =  1.08, (124) 

B ( r , t )  =(& [ c ( ~ , t )  c ( ~ + ~ , t ) l ) .  (12s) 

The system of equations (122)-(123) must be solved under the following initial and boundary conditions: 

Pt (r) I r = 0  = Pt (r) lr=o~ = 0 ,  Pt (r) It=0 = P0 (r). (126) 

There are similar conditions for the function p~C)(r). The last term in Eq. (123) describes the effect of the chemical 

source on the distribution of the intensity of scalar-field fluctuations. 
The system of equations (122)-(123) is closed on the basis of a hypothesis similar to Heisenberg's 

hypothesis for turbulent-energy transfer over the spectrum of wave numbers. The constants of the equations are 
calculated in solving the obtained system for the passive scalar in inertial and inertial-convective intervals of the 

length scales. 
The function B(r, t) presents still another problem of closure, which will be solved upon specific assignment 

of the form of the chemical source term. In solving problems of combustion within the framework of the flamelet 

conceptualization, closure of this term is possible by means of values of c(x, t) on a stoichiometric surface. The 

functions needed to calculate the coefficients Svc( t ) ,  Nt(F), and Xt(F) are related to the functions Pt(r) and P~C)(r) 
by the following formulas: 

t t t  

D(IV) ( 1 27) (o, t) = 2P~ c) (o) cc  

r 

e (t) = 15vPt(O ) , (128) 

s 

X (t) = 3DP~ c) (0) ,  (129) 

2 c (t) = 7 p~C) ( r )dr .  (130) 
o 

Knowing P~C)(r), it is possible to calculate the function DLCC(r, t) using an exact relation, namely, the nonclosed 

equation for p~C) (r) : 

2 2 0  rf F" 2 ; p~C)(r')dr' (131) DLC C (r, t) = 2 r_r_. (t) r + 4DP~ c) (r) 2 
5 L 2 Z r Ot o o 

From formulas (127)-(131) it is seen that the auxiliary system of equations for the two-point functions 

Pt(r) and P~C)(r) allows one to solve the problem of calculation of the time-dependent coefficients in the equation 

for the JPDF Pt(W, F). 
Conclusion. In this work we derived a closed equation for the joint probability density function (JPDF) of 

a reacting scalar and its gradient. The basic idea that made it possible to close the equation for the JPDF consists 

in the use of approximate expressions for the joint conditional distributions of the probabilities of the tensor 

components of the velocity gradient and the tensor components of the gradient of the scalar gradient. 
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The conditional JPDF of the tensor components of the velocity gradient is calculated in a quasi-Gaussian 

approximation with allowance for single-point mixed moments of the fields of the velocity gradient and the scalar 

gradient. Here the hypothesis of the equality of the third-order single-point mixed moments to the mixed moment 

al0(t) = (OUl/OXl)(Oc/Ox1)2/(Ou I/0Xl)21/2 (O¢/OXl) 2 was adopted. 

The evolution of the moment alo(t) can be related to the evolution of the third-order derivative at r = 0 of 

the third-order two-point structural function DLcc(O, t) over the distance. The evolution of the latter can be related 

to the evolution of the function P~C)(r) that describes the distribution of the intensity of turbulent scalar fluctuations 

over various length scales. For the functions Pt(r) and P~C)(r) we suggested a simple system of equations that is 

closed on the level of Heisenberg's hypothesis on turbulent-energy transfer over the spectrum of length scales. 

The coefficient Suc(t) in the equation for Pt(W, F) turns out to be expressed in terms of the function 

DLcc(O, t) and in terms of the energy dissipation rate of turbulent fluctuations e(t) and the intensity dissipation 

rate of scalar turbulent fluctuations Z(t). The functions e(t) and z(t) are expressed in terms of derivatives of the 

functions Pt(r) and P~C)(r) at r = 0. 
The coefficients Nt(F) and Xt(F) are expressed in terms of the fourth derivative at zero of the two-point 

structural function of the turbulent scalar field D~V)(0, t), the dispersion c2(t), and the dissipation rate z(t) over 

the spatial variable. The evolution of the functions D ~ ) ( 0 ,  t) and c2(t) is reIated to the evolution of the function 
p~C) (r). 

Thus, all the functions needed to calculate the coefficients SuC (t), Nt(F), and Xt(F) can be related to the 

evolution of the functions Pt(r) and P(tC)(r). 
It should be emphasized once again that the information needed to calculate the functions Suc(t), Nt(F), 

and Xt(F) can also be obtained in terms of the corresponding spectral functions, for which a whole series of model 

closed equations of various degrees of complexity were suggested [9, 10 l, or from experiment. 

The results obtained in the present work can be considered as a closed system of equations for the JPDF 

of a scalar and its gradient in a reacting turbulent isotropic flow. This system can be solved numerically, and the 

evolution of the function Pt(W, F) can be obtained. As yet, this problem has not been solved. In further work the 

closed equation for the JPDF Pt(W, F) will be used for derivation and numerical solution of a system of equations 

for the conditional rate of dissipation and the single-point probability density of scalar fluctuations. 

The work was carried out with the financial support of the Fund for Fundamental Research of the Republic 

of Belarus. 
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